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Inferential Statistics: Introduction 
You have already gained experience with descriptive statistics but we will now introduce a new 
class of statistics that are also useful in science - inferential statistics. Before I define inferential 
statistics, let me show you why they are useful. In the previous section, I described a research 
study that sought to determine the effects of temperature on plant biomass. Upon completion of 
her experiment, the experimenter would have sets of biomass measurements for each group. 
What does she do then? Should she take the mean of the values for each group and then make 
conclusions based on this statistic alone? What if the mean biomass for one group is only 
slightly higher than that for another group - is the difference sufficient for her to make a solid 
conclusion? Inferential statistics allow you to make comparisons in scientific studies and 
determine with confidence if differences in treatment groups truly exist.  

Inferential Statistics: An Example 
Inferential statistics are used to make comparisons between data sets and infer whether the two 
data sets are significantly different from one another. It is important to realize that when dealing 
with statistics and probability, chance always plays a role. When we compare means from two 
groups in an experiment, we are attempting to determine if the two means truly differ from one 
another, or if the difference in the means of the groups is simply due to random chance. The 
best way to explain this concept is with an example. 

Chance and "significant" differences: A Case Study  
After losing a close game in overtime, a local high school football 
coach accuses the officials of using a "loaded" coin during the pre-
overtime coin toss. He claims that the coin was altered to come up 
heads when flipped, his opponents knew this, won the coin toss, 
and consequently won the game on their first possession in 
overtime. He wants the local high school athletic association to 
investigate the matter. You are assigned the task of determining if  

the coach's accusation stands up to scrutiny. Well, you know that a "fair" coin should land on 
heads 50% of the time, and on tails 50% of the time. So how can you test if the coin in question 
is doctored? If you flip it ten times and it comes up heads six times, does that validate the 
accusation? What if it comes up heads seven times? What about eight times? To make a 
conclusion, you need to know the probability of these occurrences.  



To examine the potential outcomes of coin flipping, we will use a Binomial Distribution. This 
distribution describes the probabilities for events when you have two possible outcomes (heads 
or tails) and independent trials (one flip of the coin does not influence the next flip). The 
distribution for ten flips of a fair coin is shown in Figure 1. 

Figure 1. Binomial distribution for fair coin with ten flips 

Note that ratio of 5 heads:5 tails is the most probable, and the probabilities of other 
combinations decline as you approach greater numbers of heads or tails. The figure 
demonstrates two important points. One, it shows that the expected outcome is the most 
probable - in this case a 5:5 ratio of heads to tails. Two, it shows that unlikely events can 
happen due solely to random chance (e.g., getting 0 heads and 10 tails), but that they have a 
very low probability of occurring.  

Also note that the binomial 
distribution is rather "jagged" when 
only ten coin flips are performed. 
As the number of trials (coin flips) 
increases, the shape of the 
distribution begins to smooth out 
and resemble a normal curve. 
Note how the shape of the curve 
with 50 trials is much smoother 
than the curve for 10 trials, and 
more representative of a normal 
curve (Figure 2).  

Figure 2. Binomial distribution for fair coin with 50 flips 



Inferential Statistics: Probability 
Normal curves are useful because they allow us to make statistical conclusions about the 
likelihood of being a certain distance from the center (mean) of the distribution. In a normal 
distribution, there are probabilities associated with differing distances from the mean. Recall that 
68% of the values in a distribution are within one standard deviation of the mean, 95% of values 
are within two standard deviations of the mean, and 99% of the values are within three standard 
deviations of the mean.  

Figure 3. Probabilities for results of 10 coin flips [ animate ] 

The difficulty with working with probabilities is knowing when to conclude that an occurrence is 
not due to random chance. Values far from the mean in a distribution can occur, but will occur 
with low probability (Figure 3). We are therefore essentially testing the hypothesis that the 
observed data fits a particular distribution. In the coin flip example, we're testing to see if our 
results fit those expected from the distribution of a fair coin. So we need to come up with a point 
at which we can conclude our results are definitely not part of the distribution we are testing. So 
when do you determine that a given data set no longer fits a distribution when random chance 
will always play a role? Well, you've got to make an arbitrary decision, and statisticians set 
precedent long ago. Given that 95% of the values in a distribution fall within two standard 
deviations of the mean, statisticians have decided that if a result falls outside of this range, you 
can determine that your data does not fit the distribution you are testing. This essentially says 
that if your result has equal to or less than a 5% chance of belonging to a particular distribution, 
then you can conclude it is not a part of that distribution. As probabilities are listed as 
proportions, this means that a result is "statistically significant" if its occurrence is equal to or 
less than 0.05. This leads to our statistical "rule of thumb" - whenever a statistical test returns a 
probability value (or "p-value") equal to or less than 0.05, we reject the hypothesis that our 
results fit the distribution we are testing. The standard practice in such comparisons is to use a 
null hypothesis (written as "Ho"), which states that the data fits the distribution.  

Ho: The data fit the assigned distribution 

To practice your interpretation of p-values, decide if each of the p-values below indicates that 
you should reject your null hypothesis.  Answers are provided at the end of the exercise. 

https://grants.kennesaw.edu/esa21/docs/anim-probability.gif


 
PRACTICE PROBLEM #1 
  
p = 0.11  Reject or Do Not Reject Ho? 
 
p = 0.56  Reject or Do Not Reject Ho? 
 
p = 0.99  Reject or Do Not Reject Ho? 
 
p = 0.01  Reject or Do Not Reject Ho? 
 
p < 0.005  Reject or Do Not Reject Ho? 
 
 
So our coin test is comparing our result to the distribution of a fair coin. To test the coin, you opt 
to flip it 50 times, tally the number of heads and tails, and compare your results to the fair coin 
distribution. You obtain the results listed below. 
 

Heads 33 

Tails 17 

 
So what does this mean? Referencing the distribution (Figure 2 below), we see that a ratio of 33 
heads to 17 tails would only occur about 1% of the time if the coin were indeed fair. As this is 
less than 5% (p < 0.05), we can reject our hypothesis that the result fits the distribution. We 
were testing the distribution of a fair coin, so this suggests the coin was not fair, and the coach's 
accusation has merit. If we look at a distribution for a rigged coin that comes up heads 70% of 
the time instead of 50% of the time (Figure 4), we notice that our result fits quite well into this 
distribution. This indicates that further tests should be conducted, and the number of trials (coin 
flips) increased so a more definitive conclusion could be reached. Man, I love a good 
controversy... 



 

 
Figure 2 (again). Binomial distribution for fair coin with 50 flips 

 
Figure 4. Binomial distribution for coin rigged towards "heads" 

 
Using Inferential Statistics 
In the coin flip example, we tested to see if the results of our tests fit the distribution of a fair coin 
based on the predicted probabilities of the various outcomes. Most statistical tests in the 
sciences do not work this way, however. In most cases, scientists manipulate variables in 
experiments, and then make comparisons between groups receiving different treatments. For 
example, if you are investigating the effects of different brands of fertilizer on tomato plant 
growth, you would be interested in comparing the growth of the plants in the different treatments 
to one another. In a situation like this, we are interested in comparing two groups to one 
another, rather than comparing one group to an existing distribution. To do this, we will use a 
statistical test that compares the distributions of two data sets to one another - the t-test.  
 



The t-test  
The t-test is an inferential statistic that enables you to compare the means of two groups and 
determine if they are statistically different from one another. In essence, the test compares the 
distributions of the two data sets to one another, and tests the hypothesis that the two data sets 
belong to the same distribution. If there is a low likelihood that the two data sets belong to the 
same distribution (probability less than or equal to 5%), then we can conclude that true 
differences in the means of the two groups exist, and the two groups are significantly different 
from one another. The t-test accomplishes this task by looking at both the mean and the 
dispersion of the data in the two groups. Figures 5 and 6 will help to illustrate how a t-test works:  
Let's say we've got data from two groups that we wish to compare. To help visualize things, we 
can graph the distributions of the two data sets on one graph so we can see the mean and 
dispersion for the two groups (Figure 5). 
 

 
 

Figure 5. The t-test 

 
 

Figure 6. t-test comparison of distributions 
 
A t-test compares both the means and distributions of data sets in order to determine if they are 
different from one another. Why does it do this? Why not just look at the means and make 
conclusions based on that? As illustrated here, the dispersion of the data tells you a great deal 
about the data set. Note that in each of the three scenarios shown (Figure 6), the means for the 
two groups are the same but their distributions are very different. In the low variability example, 
the distributions for the two groups are very narrow and overlap only slightly. In the medium 
variability example the distributions overlap much more, and in the high variability example the 
two distributions overlap almost entirely. A t-test looks at the ratio of the difference in group 
means to variability, in essence taking the ratio of the "signal" (the means) versus the "static" 
(the variance).  Click animate below to see the formula. 
 

 
 

Animated t-test formula [ animate ] 
 

https://grants.kennesaw.edu/esa21/docs/animgif-t-test-formula.gif


This ratio is the t-statistic, and the value of this statistic is used to determine the p-value for your 
test. The t-statistic is referenced to a statistical table and this determines the probability of that 
result being due to chance alone. Recall that a p-value equal to or less than 5% (0.05) indicates 
that the two groups are significantly different from one another. Our goal for this course is for 
you to gain experience with the t-test and to realize its usefulness in making conclusions when 
comparing groups of data. While we are not stressing the complexities and underlying 
mechanics of the t-test, you should be able to understand the test, use it to compare data sets, 
and correctly interpret the results the test gives you. That having been said, let's continue on 
and do an example to show you the usefulness of the t-test. 
 
The t-test - An Example 
Let's assume that a researcher is attempting to 
determine the effects of pesticide pollution on the 
hatching success of fish eggs. He has noticed that 
fish eggs in streams near agricultural fields fare 
poorly, while those is undisturbed areas hatch 
successfully. The researcher sets up a lab 
experiment in which ten groups of fish eggs are 
allowed to develop in unmanipulated stream water, 
and ten groups of eggs develop in stream water with 
the addition of pesticide. The proportion of eggs 
hatching in each group is tallied (Table 1), and 
descriptive statistics for the two groups compared.  
 

Statistic No Pesticide Pesticide 

Mean proportion eggs 
hatching 

0.87 0.59 

Standard deviation 0.07 0.09 
 

Group 

Proportion eggs 
hatching 

No Pesticide Pesticide 

1 0.80 0.50 

2 0.76 0.45 

3 0.81 0.68 

4 0.90 0.77 

5 0.95 0.64 

6 0.84 0.60 

7 0.88 0.54 

8 0.99 0.57 

9 0.86 0.62 

10 0.93 0.57 

 
Table 1. Effects of pesticide pollution 

on hatching success of fish eggs. 
 
While the results indicate an adverse effect of pesticide exposure on egg hatching success, how 
can we be sure that the difference in the hatching success is "significant", and didn't just occur 
by chance? After all, the two data sets do overlap as the lowest value in the no pesticide groups 
and the highest value in the pesticide groups was 76% hatching success. To compare these two 
data sets, we must first state our hypothesis. Our null hypothesis would be that the two groups 
are not different, and that both data sets belong to the same distribution.  
 

Ho: The mean proportion eggs hatching in the two groups is not different 
 

OR 
 

Ho: The two experimental groups are part of the same distribution 
 



We then conduct a t-test on the data set, which will examine the differences in mean and 
dispersion in the two groups, and provide a probability that the two groups are part of the same 
distribution.  
 
As the p-value returned by the test was less than 0.05, 
we can reject our null hypothesis, conclude that the two 
groups are indeed from different distributions, and that 
they are significantly different from one another. The 
researcher can therefore conclude that pesticide 
exposure reduces the hatching success of eggs of this 
species. All of the comparisons you will be making in 
laboratory exercises this semester will mimic this 
example, so you should take special care to ensure you 
understand the operation and usefulness the t-test for 
comparing data sets.  

Comparison t-statistic p-value 

t-test 7.56 p< 0.0005 
 

 
Performing t-tests  
To perform t-tests on data sets, we suggest using an online t-test calculator from 
Graphpad.com. It can be accessed at the address below, and is exceptionally easy to use. 
WebCrunch, the program we are using to calculate descriptive statistics and create graphs, also 
has a t-test function, but we suggest you use the one below as it is tailored to the needs of a 
non-majors science course.  
 
 

Graph Pad Statistical Application 
GraphPad Software Inc. 

http://www.graphpad.com/quickcalcs/index.cfm 
 
 
(1.) Select the "Continuous data" option, then the "Continue" button.  
(2.) Select the "t test to compare two means" option, then hit the "Continue" button.  
(3.) Simply enter your data in the columns by group, select "Unpaired t-test", and then hit the 
"Calculate now" button. Your p-value and t statistic will be listed on the results page. 
 
t-tests and Statistical Assumptions - A Word of Caution 
Those of you familiar with the t-test have likely noticed that we are omitting a step in our use of 
the t-test - the testing of assumptions. For a given data set to be suitable for analysis with a t-
test, it must meet two assumptions: (1.) the variance in the two groups being compared cannot 
be significantly different from one another, and (2.) the data must roughly fit a normal 
distribution. When statisticians and scientists conduct a t-test, they first verify these assumptions 
with statistical tests, and only proceed once these assumptions have been satisfied. If the 
variances in the two groups differ appreciably, the data can be mathematically "transformed" to 
bring variances closer together. If the data are not normally distributed, they can be transformed 
for normality, or an alternative test that does not require a normal distribution can be used.  
As these steps appreciably increase the statistical complexity of t-test analysis, we will not be 
testing data sets for assumptions in this course. You must therefore realize that the statistical 
rigor of your results may not be comparable to that in published scientific studies, and that we 
are consciously avoiding the use of assumption tests to simplify the statistical analyses used in 
this exercise.  
 
 

http://www.graphpad.com/quickcalcs/index.cfm


Answers to Practice Problems 

PRACTICE PROBLEM #1 

p = 0.11 Reject or Do Not Reject Ho? 
p = 0.56 Reject or Do Not Reject Ho? 
p = 0.99 Reject or Do Not Reject Ho? 
p = 0.01 Reject or Do Not Reject Ho? 
p < 0.005 Reject or Do Not Reject Ho? 

Sample Problems 
The link below will take you to a PDF file with sample problems.  Complete the problems 
assigned by your instructor.  If none were assigned, complete problems #1-4.   

Sample Problems 
https://grants.kennesaw.edu/esa21/docs/problems.pdf 

https://grants.kennesaw.edu/esa21/docs/problems.pdf


Creating and Analyzing Experiments: Putting It All Together 
 
The activities in this module have showed you how to critically evaluate experimental design, 
calculate and evaluate descriptive statistics for data sets, and compare data sets with inferential 
statistics.  We will now put all of this material together in a “Capstone” exercise.  You will design 
an experiment gather data, calculate descriptive statistics, and calculate and interpret a t-test to 
compare your groups.   
 
The Metric System 
If you are measuring something, you need "units" to describe the object. In formal terms, a scale 
of measurement is the assignment of numbers or symbols to measure an attribute. In the past, 
natural units of measurement, such as a "foot", were commonly used. Unfortunately, these units 
were somewhat arbitrary. In Roman times, for example, a "foot" in England was 29.6 
centimeters. When the Saxons took over, the size of a "foot" grew to 33.5 cm. Five centuries 
later, it was reduced to 30.5 cm. Finally, in 1959, the "International Foot" was defined as 30.48 
cm. Even today, a "foot" in England is different from a "fod" in Denmark (31.41 cm), a "fod" in 
Sweden (29.69 cm), and a "fuss" in Germany (31.61 cm). With the increase in international 
trade during the 18th century, merchants needed to standardize units of measurement. This 
resulted in the development and nearly universal adoption of the metric system around the 
world. Of course, the United States is a notable exception to this worldwide trend, as we 
continue to use the English system of measurement. We buy our gas in gallons, measure our 
weight in pounds, and gauge driving distances in miles. The metric system has crept into our 
society somewhat (e.g., the two-liter soda bottle), but universal acceptance of this system of 
measurement anytime soon is unlikely.  
 
In science, use of the metric system is unquestioned. Because of its international familiarity and 
ease of use, scientific studies utilize metric measurements. All of the measurements you make 
in this exercise must therefore be in metric units. As we've all dealt with the metric system 
during high school, a review of the system will not be provided here. If you need a refresher, 
please visit the web site below for additional information. 
 
 

The NIST Reference on Constants, Units, and Uncertainty 
Physics Laboratory at NIST 

http://physics.nist.gov/cuu/Units/index.html 
 
 
Testing Factors Affecting Leaf Size 
If you look at the leaves that fall off of the trees in autumn, you will notice that not all leaves of 
the same kind are alike. Some are larger than others, some are longer or wider, some have 
different stem lengths, and some may have slightly different shapes. This is not surprising if you 
consider that they may be from different trees. Just as people have differently-sized hands or 
feet, different trees may have differently-sized leaves. If you do further observations, however, 
separating out leaves found under one tree from leaves found under another tree, you find both 
sets are similar in having larger and smaller leaves. This suggests that leaf size is not simply a 
function of being from different trees, since it seems that leaves from the same tree differ in 
size.  The needles of pine trees are simply modified forms of leaves and also vary within and 
among pine trees. 
 

http://physics.nist.gov/cuu/Units/index.html


The size of a leaf/needle on a tree can be influenced by its position on the tree (outside near 
light or inside near trunk), exposure to air pollution, levels of nutrients or water in the soil, and a 
host of other factors.  In this exercise, you will compare leaf/needle size for one factor on trees 
in your yard or local area.  You will identify a hypothesis to test, design an effective experiment, 
gather data, calculate statistics, critically evaluate your hypothesis, and draw a conclusion. 
 
But what should you test?  One idea is to measure leaves on the same tree(s) that receive 
differing levels of sunlight.  Sunlight is required for photosynthesis, and photosynthesis 
produces the food that trees and leaves need to grow.  It is reasonable to hypothesize that the 
size of a leaf could therefore be related to sunlight levels at its location.  Another factor you 
could examine is tree proximity to a busy road or a large water source, such as a lake or pond.  
Leaves from trees closest to the road or pond could be compared to those that are much farther 
away.  These are but a few suggestions – the actual factor examined is up to you unless one is 
assigned by your instructor. 
 

Gathering Data:  

1. Choose the factor you wish to examine and create two experimental groups (e.g., high-light 
versus low-light leaves).  Measure at least 10 leaves/needles, chosen randomly, from each of 
the experimental groups.  Do not pick the leaves off the plant – simply measure them as they 
are.   

2. Construct a data table for your experiment on the Capstone Activity Sheet. 

3. Record your data on the data table you have constructed.  

4. Complete the Activity Sheet as directed. 

 
After completing this exercise, you will be able to see how all of the aspects of experimental 
design and analysis we’ve described so far can come together to form a sound science 
experiment.   



ESA 21: Environmental Science Activities Activity Sheet  
Basics Capstone 

 
Name: 
 
Instructor: 
 
Inferential statistics: 
List the null hypothesis of the study, and fill in the table for the t-test results.  Complete the 
problems assigned by your instructor – tables for four problems have been provided. 

 
 
Problem #: 
 
Ho: 

 
t-statistic p-value Do you reject the Ho ? 

 
 

  

 

 
 
Problem #: 
 
Ho: 

 
t-statistic p-value Do you reject the Ho ? 

 
 

  

 
 
 
Problem #: 
 
Ho: 

 
t-statistic p-value Do you reject the Ho ? 

 
 

  

 

 
 
Problem #: 
 
Ho: 

 
t-statistic p-value Do you reject the Ho ? 

 
 

  

 



Experimental Design: Factors Affecting Leaf Size 
List the null hypothesis, independent variable, and dependent variable for the study. 
 
Ho: 
Independent variable: 
Dependent variable: 
 
Explain your experimental design in the space below. 
 
 
 
 
 
 
 
 
 
 
 
 
Data: 
Create a table for your data in the space below.  Include a title and follow all formatting 
requirements.  You should have at least 10 data points from each of your two groups. 
 
Table 1: 

 
 
 
 
 
 
 
 
 
 
 
Descriptive Statistics: 
Provide the statistics below for your two groups. 
 
Table 2:  
 

 Mode Median Mean Std. Dev. 
 

     
 

     
 

     
 

 



Inferential statistics: 
Refer back to your null hypothesis, and complete the t-test table for your data set. 

 
t-statistic p-value Do you reject the Ho? 

 
 

  

 
Data presentation: 
Graph your data below, following all formatting requirements.  It is advisable that you review the 
sections on graphing, particularly the one on what to graph, prior to creating the graph. 
 
Figure 1:  

 

                       

                       

                       

                       

                       

                       

                       

                       

                       

                       

                       

                       

                       

 
 
Conclusion: 
Summarize the results of the study in your own words, referencing the descriptive statistics and 
Figure 1.  Restate your null hypothesis, and evaluate it based upon the results of the t-test.  
Address the assumptions of the study and comment on any facet of the experimental design 
you deem appropriate.  
 
 


